题目内容
【答案】分析:根据即可推出S梯形ABGF+S△ABC-S△CGF,然后根据梯形、三角形的面积公式表示出阴影部分的面积,由CG=BC+BG,AB=BC=CD=AD,EF=FG=GB=BE,经过等量代换后,即可推出阴影部分的面积.
解答:解:∵正方形ABCD和正方形EFGB,
∴AB=BC=CD=AD,EF=FG=GB=BE,
∵正方形ABCD的边长为2,
∴S△AFC=S梯形ABGF+S△ABC-S△CGF
=
×(FG+AB)×BG+
×AB×BC-
×FG×CG
=
×(FG+AB)×BG+
×AB×BC-
×FG×(BC+BG)
=
×FG2+FG+2-FG-
×FG2
=2.
故答案为:2.
点评:本题主要考查整式的混合运算,梯形的面积、三角形的面积、正方形的性质,关键在于根据图形推出S△AFC=S梯形ABGF+S△ABC-S△CGF.
解答:解:∵正方形ABCD和正方形EFGB,
∴AB=BC=CD=AD,EF=FG=GB=BE,
∵正方形ABCD的边长为2,
∴S△AFC=S梯形ABGF+S△ABC-S△CGF
=
=
=
=2.
故答案为:2.
点评:本题主要考查整式的混合运算,梯形的面积、三角形的面积、正方形的性质,关键在于根据图形推出S△AFC=S梯形ABGF+S△ABC-S△CGF.
练习册系列答案
相关题目