题目内容

如图所示,CD、EF表示高度不同的两座建筑物,已知CD高15米,小明站在A处,视线越过CD,能看到它后面的建筑物的顶端E,此时小明的视角∠FAE=45°,为了能看到建筑物EF上点M的位置,小明延直线FA由点A移动到点N的位置,此时小明的视角∠FNM=30°,则小明由点A移动到点N的距离是________米.

15
分析:本题中,CD是直角三角形CDN和ACD的公共边,因此可用CD求出DN和AD,然后再求AN.
解答:直角三角形CDN中,DN=CD÷tan30°=15米,
直角三角形CDA中,AD=CD÷tan45°=15米,
因此,AN=DN-AD=(15-15)米.
点评:利用数学知识解决实际问题是中学数学的重要内容.解决此问题的关键在于正确理解题意的基础上建立数学模型,把实际问题转化为数学问题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网