题目内容
已知点A(1,3),B(4,-1),在x轴上找一点P,使得AP+BP最小,那么P点的坐标是________.
(
,0)
分析:只有当A、B、P这三点共线时AP+BP=AB,这时就有最小值,根据这个求出AB的解析式,再求它和x轴的交点即可.
解答:设直线AB的解析式为y=kx+b,所以
,
解得k=-
,b=
,所以解析式为y=-
x+
,
当y=0时,x=
,所以P点的坐标是(
,0).
点评:主要考查了三角形三边关系和最短线路问题;解题的关键是根据“三角形两边之差小于第三边”得到AP+BP=AB时有最小值,所以利用函数的知识即可求解.
分析:只有当A、B、P这三点共线时AP+BP=AB,这时就有最小值,根据这个求出AB的解析式,再求它和x轴的交点即可.
解答:设直线AB的解析式为y=kx+b,所以
解得k=-
当y=0时,x=
点评:主要考查了三角形三边关系和最短线路问题;解题的关键是根据“三角形两边之差小于第三边”得到AP+BP=AB时有最小值,所以利用函数的知识即可求解.
练习册系列答案
相关题目