题目内容
的倒数是( )
A. B. C.- D.
阅读下面材料:
小炎遇到这样一个问题:如图1,点E、F分别在正方形ABCD的边BC,CD上,∠EAF=45°,连结EF,则EF=BE+DF,试说明理由.
小炎是这样思考的:要想解决这个问题,首先应想办法将这些分散的线段相对集中.她先后尝试了翻折、旋转、平移的方法,最后发现线段AB,AD是共点并且相等的,于是找到解决问题的方法.她的方法是将△ABE绕着点A逆时针旋转90°得到△ADG,再利用全等的知识解决了这个问题(如图2).
参考小炎同学思考问题的方法,解决下列问题:
(1)如图3,四边形ABCD中,AB=AD,∠BAD=90°点E,F分别在边BC,CD上,∠EAF=45°.若∠B,∠D都不是直角,则当∠B与∠D满足_ 关系时,仍有EF=BE+DF;
(2)如图4,在△ABC中,∠BAC=90°,AB=AC,点D、E均在边BC上,且∠DAE=45°,若BD=1, EC=2,求DE的长.
不等式组的解集是( )
A. B. C. D.无解
解不等式组:,的整数解是 。
函数的图象经过点(2,1),则k的值为( )
A. B. C.2 D.-2
(9分)如图,△ABC在坐标平面内三个顶点的坐标分别为A(1,2)、B(3,3)、
C(3,1).
(1)根据题意,请你在图中画出△ABC;
(2)在原图中,以B为位似中心,画出△A′BC′使它与△ABC位似且位似比是3:1,并写出顶点A′和C′的坐标.
如图,小红随意在地板上踢毽子,则毽子恰好落在黑色方砖上的概率为_____.
(本题5分)已知:如图所示,AB∥CD,AE交CD于点C,DE⊥AE,垂足为E,∠A+∠1=74º, 求:∠D的度数.
如图,∠AOB的两边OA,OB均为平面反光镜,∠AOB=40°.在射线0B上有一点P,从P点射出一束光线经OA上的Q点反射后,反射光线QR恰好与OB平行,则∠QPB的度数是( )
A.60° B.80° C.100° D.120°