题目内容
如图,将正方形和按如图所示方式放置,点和点在直线上,点在轴上,若平移直线使之经过点,则直线向右平移的距离为( )
A. 1 B. C. 2 D. 3
一艘货轮以18km/h的速度在海面上沿正东方向航行,当行驶至A处时,发现它的东南方向有一灯塔B,货轮继续向东航行30分钟后到达C处,发现灯塔B在它的南偏东15°方向,则此时货轮与灯塔B的距离是________km.
如图,顶点为C的抛物线y=ax2+bx(a>0)经过点A和x轴正半轴上的点B,连接OC、OA、AB,已知OA=OB=2,∠AOB=120°.
(1)求这条抛物线的表达式;
(2)过点C作CE⊥OB,垂足为E,点P为y轴上的动点,若以O、C、P为顶点的三角形与△AOE相似,求点P的坐标;
(3)若将(2)的线段OE绕点O逆时针旋转得到OE′,旋转角为α(0°<α<120°),连接E′A、E′B,求E′A+E′B的最小值.
如图,直线的解析表达式为,且与轴交于点,直线经过点,直线, 交于点.
(1)求点的坐标;
(2)求直线的解析表达式;
(3)求的面积;
(4)在直线上存在异于点的另一点,使得与的面积相等,请直接写出点的坐标.
从A地向B地打长途,不超3分钟,收费2.4元,以后每超一分超加收一元,若通话时间为t分钟(t≥3且t是整数),则付话费y元与t分钟函数关系式是__________________.
若y=x+2﹣b是正比例函数,则b的值是( )
A. 0 B. ﹣2 C. 2 D. ﹣0.5
△ABC中,AD⊥BC,AE平分∠BAC交BC于点E.
(1)若∠B=20°,∠C=80°,求∠EAC和∠EAD的大小.
(2)若∠C>∠B,由(1)的计算结果,你能发现∠EAD与∠C﹣∠B的数量关系吗?写出这个关系式,并加以证明.
对函数y=﹣2x+2的描述错误是( )
A. y随x的增大而减小 B. 图象与x轴的交点坐标为(1,0)
C. 图象经过第一、三、四象限 D. 图象经过点(3,-4)
定义运算:a?b=2ab.若a,b是方程x2+x-m=0(m>0)的两个根,则(a+1)?a -(b+1)?b的值为( )
A. 0 B. 2 C. 4m D. -4m