题目内容
如图,⊙O是△ABC的外接圆,∠OCB=40°,则∠A的度数等于( )
A. 60° B. 50° C. 40° D. 30°
在△ABC中,∠A=90°,AB=4,AC=3,M是AB上的动点(不与A,B重合),过M点作MN∥BC交AC于点N.
(1)如图1,把△AMN沿直线MN折叠得到△PMN,设AM=x.
i.若点P正好在边BC上,求x的值;
ii.在M的运动过程中,记△MNP与梯形BCNM重合的面积为y,试求y关于x的函数关系式,并求y的最大值.
(2)如图2,以MN为直径作⊙O,并在⊙O内作内接矩形AMQN.试判断直线BC与⊙O的位置关系,并说明理由.
一张正方形纸片经过两次对折,并在如图所示的位置上剪去一个小正方形,打开后的图形是 ( )
A. B. C. D.
解下列方程:
(1) (2)
两个相似三角形的一对对应边分别为20cm,8cm,它们的周长相差60cm,则这两个三角形的周长为________、_______.
阅读下面材料:
点A、B在数轴上分别表示实数a、b,A、B两点之间的距离表示为∣AB∣.
当A、B两点中有一点在原点时,不妨设点A在原点,
如图1,∣AB∣=∣OB∣=∣b∣=∣a-b∣;
当A、B两点都不在原点时,如图2,点A、B都在原点的右边
∣AB∣=∣OB∣-∣OA∣=∣b∣-∣a∣= =∣a-b∣;
如图3,当点A、B都在原点的左边,
|AB∣=∣OB∣-∣OA∣=∣b∣-∣a∣==∣a-b∣;
如图4,当点A、B在原点的两边,
∣AB∣=∣OB∣+∣OA∣=∣a∣+∣b∣= =∣a-b∣;
回答下列问题:
(1)数轴上表示1和6的两点之间的距离是______,数轴上表示2和-3的两点之间的距离是______
(2)数轴上若点A表示的数是x,点B表示的数是-4,则点A和B之间的距离是______,若∣AB∣=3,那么x为______;
(3)当x是______时,代数式;
(4)若点A表示的数,点B与点A的距离是10,且点B在点A的右侧,动点P、Q同时从A、B出发沿数轴正方向运动,点P的速度是每秒3个单位长度,点Q的速度是每秒个单位长度,求运动几秒后,点Q与点P 相距1个单位?(请写出必要的求解过程)
计算题:
(1) (2)
(3) (4)
(5) (6)
的倒数是( )
A. 5 B. -5 C. - D.
如图,在△ABC中,∠A=58°,∠B=63°,则外角∠ACD=__________度。