题目内容

如图,在平行四边形ABCD中,E为AB的中点,F为AD上一点,EF交AC于G,AF=2cm,DF=4cm,AG=3cm,则AC的长为


  1. A.
    9cm
  2. B.
    14cm
  3. C.
    15cm
  4. D.
    18cm
C
分析:延长FG交CB的延长线于点H.根据平行四边形的性质,得BC=AD=6cm,BC∥AD.根据AAS可以证明△AFE≌△BHE,则BH=AF=2cm,再根据BC∥AD,得,求得CG的长,从而求得AC的长.
解答:解:∵四边形ABCD是平行四边形,
∴BC=AD=6cm,BC∥AD.
∴∠EAF=∠EBH,∠AFE=∠BHE,
又AE=BE,
∴△AFE≌△BHE,
∴BH=AF=2cm.
∵BC∥AD,


则CG=12,
则AC=AG+CG=15(cm).
故选C.
点评:此题综合考查了平行四边形的性质、全等三角形的判定及性质、平行线分线段成比例定理.此题中要能够巧妙构造辅助线.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网