题目内容

如图1,在锐角△ABC中,∠ABC=45°,高线AD、BE相交于点F.

(1)判断BF与AC的数量关系并说明理由;

(2)如图2,将△ACD沿线段AD对折,点C落在BD上的点M,AM与BE相交于点N,当DE∥AM时,判断NE与AC的数量关系并说明理由.

【答案】(1)BF=AC,理由见解析;(2)NE=AC,理由见解析.

【解析】试题分析:(1)如图1,证明△ADC≌△BDF(AAS),可得BF=AC;
(2)如图2,由折叠得:MD=DC,先根据三角形中位线的推论可得:AE=EC,由线段垂直平分线的性质得:AB=BC,则∠ABE=∠CBE,结合(1)得:△BDF≌△ADM,则∠DBF=∠MAD,最后证明∠ANE=∠NAE=45°,得AE=EN,所以EN=AC.

试题解析:

(1)BF=AC,理由是:

如图1,∵AD⊥BC,BE⊥AC,

∴∠ADB=∠AEF=90°,

∵∠ABC=45°,

∴△ABD是等腰直角三角形,

∴AD=BD,

∵∠AFE=∠BFD,

∴∠DAC=∠EBC,

在△ADC和△BDF中,

∴△ADC≌△BDF(AAS),

∴BF=AC;

(2)NE=AC,理由是:

如图2,由折叠得:MD=DC,

∵DE∥AM,

∴AE=EC,

∵BE⊥AC,

∴AB=BC,

∴∠ABE=∠CBE,

由(1)得:△ADC≌△BDF,

∵△ADC≌△ADM,

∴△BDF≌△ADM,

∴∠DBF=∠MAD,

∵∠DBA=∠BAD=45°,

∴∠DBA﹣∠DBF=∠BAD﹣∠MAD,

即∠ABE=∠BAN,

∵∠ANE=∠ABE+∠BAN=2∠ABE,

∠NAE=2∠NAD=2∠CBE,

∴∠ANE=∠NAE=45°,

∴AE=EN,

∴EN=AC.

【题型】解答题
【结束】
19

某校学生会决定从三明学生会干事中选拔一名干事当学生会主席,对甲、乙、丙三名候选人进行了笔试和面试,三人的测试成绩如下表所示:

测试项目

测试成绩/分

笔试

75

80

90

面试

93

70

68

根据录用程序,学校组织200名学生采用投票推荐的方式,对三人进行民主测评,三人得票率如扇形统计图所示(没有弃权,每位同学只能推荐1人),每得1票记1分.

(1)分别计算三人民主评议的得分;

(2)根据实际需要,学校将笔试、面试、民主评议三项得分按3:3:4的比例确定个人成绩,三人中谁会当选学生会主席?

练习册系列答案
相关题目

阅读下列材料,完成任务:

自相似图形

定义:若某个图形可分割为若干个都与它相似的图形,则称这个图形是自相似图形.例如:正方形ABCD中,点E、F、G、H分别是AB、BC、CD、DA边的中点,连接EG,HF交于点O,易知分割成的四个四边形AEOH、EBFO、OFCG、HOGD均为正方形,且与原正方形相似,故正方形是自相似图形.

任务:

(1)图1中正方形ABCD分割成的四个小正方形中,每个正方形与原正方形的相似比为   

(2)如图2,已知△ABC中,∠ACB=90°,AC=4,BC=3,小明发现△ABC也是“自相似图形”,他的思路是:过点C作CD⊥AB于点D,则CD将△ABC分割成2个与它自己相似的小直角三角形.已知△ACD∽△ABC,则△ACD与△ABC的相似比为   

(3)现有一个矩形ABCD是自相似图形,其中长AD=a,宽AB=b(a>b).

请从下列A、B两题中任选一条作答:我选择   题.

A:①如图3﹣1,若将矩形ABCD纵向分割成两个全等矩形,且与原矩形都相似,则a=   (用含b的式子表示);

②如图3﹣2若将矩形ABCD纵向分割成n个全等矩形,且与原矩形都相似,则a=   (用含n,b的式子表示);

B:①如图4﹣1,若将矩形ABCD先纵向分割出2个全等矩形,再将剩余的部分横向分割成3个全等矩形,且分割得到的矩形与原矩形都相似,则a=   (用含b的式子表示);

②如图4﹣2,若将矩形ABCD先纵向分割出m个全等矩形,再将剩余的部分横向分割成n个全等矩形,且分割得到的矩形与原矩形都相似,则a=   (用含m,n,b的式子表示).

【答案】(1);(2);(3)A、①;② ;B、①;②

【解析】试题分析:(1)根据相似比的定义求解即可;(2)由勾股定理求得AB=5,根据相似比等于可求得答案;(3)A.①由矩形ABEF∽矩形FECD,列出比例式整理可得;②由每个小矩形都是全等的,可得其边长为b和a,列出比例式整理即可;B.①分当FM是矩形DFMN的长时和当DF是矩形DFMN的长时两种情况,根据相似多边形的性质列比例式求解;②由题意可知纵向2块矩形全等,横向3块矩形也全等,所以DN=b,然后分当FM是矩形DFMN的长时和当DF是矩形DFMN的长时两种情况,根据相似多边形的性质列比例式求解.

【解析】
(1)∵点H是AD的中点,

∴AH=AD,

∵正方形AEOH∽正方形ABCD,

∴相似比为: ==

故答案为:

(2)在Rt△ABC中,AC=4,BC=3,根据勾股定理得,AB=5,

∴△ACD与△ABC相似的相似比为: =

故答案为:

(3)A、①∵矩形ABEF∽矩形FECD,

∴AF:AB=AB:AD,

a:b=b:a,

∴a=b;

故答案为:

②每个小矩形都是全等的,则其边长为b和a,

则b: a=a:b,

∴a=b;

故答案为:

B、①如图2,

由①②可知纵向2块矩形全等,横向3块矩形也全等,

∴DN=b,

Ⅰ、当FM是矩形DFMN的长时,

∵矩形FMND∽矩形ABCD,

∴FD:DN=AD:AB,

即FD: b=a:b,

解得FD=a,

∴AF=a﹣a=a,

∴AG===a,

∵矩形GABH∽矩形ABCD,

∴AG:AB=AB:AD

a:b=b:a

得:a=b;

Ⅱ、当DF是矩形DFMN的长时,

∵矩形DFMN∽矩形ABCD,

∴FD:DN=AB:AD

即FD: b=b:a

解得FD=

∴AF=a﹣=

∴AG==

∵矩形GABH∽矩形ABCD,

∴AG:AB=AB:AD

:b=b:a,

得:a=b;

故答案为:

②如图3,

由①②可知纵向m块矩形全等,横向n块矩形也全等,

∴DN=b,

Ⅰ、当FM是矩形DFMN的长时,

∵矩形FMND∽矩形ABCD,

∴FD:DN=AD:AB,

即FD: b=a:b,

解得FD=a,

∴AF=a﹣a,

∴AG===a,

∵矩形GABH∽矩形ABCD,

∴AG:AB=AB:AD

a:b=b:a

得:a=b;

Ⅱ、当DF是矩形DFMN的长时,

∵矩形DFMN∽矩形ABCD,

∴FD:DN=AB:AD

即FD: b=b:a

解得FD=

∴AF=a﹣

∴AG==

∵矩形GABH∽矩形ABCD,

∴AG:AB=AB:AD

:b=b:a,

得:a=b;

故答案为: b或b.

点睛:本题考查了信息迁移,矩形的性质,相似多边形的性质及分类讨论的数学思想,读懂题意,熟练掌握相似比多边形的性质,正确运用分类讨论思想是解答本题的关键.

【题型】解答题
【结束】
24

如图,在平面直角坐标系xOy中,直线y=kx+b与x轴交于点A,与y轴交于点B.已知抛物线y=﹣x2+bx+c经过A(3,0),B(0,3)两点.

(1)求此抛物线的解析式和直线AB的解析式;

(2)如图①,动点E从O点出发,沿着OA方向以1个单位/秒的速度向终点A匀速运动,同时,动点F从A点出发,沿着AB方向以个单位/秒的速度向终点B匀速运动,当E,F中任意一点到达终点时另一点也随之停止运动,连接EF,设运动时间为t秒,当t为何值时,△AEF为直角三角形?

(3)如图②,取一根橡皮筋,两端点分别固定在A,B处,用铅笔拉着这根橡皮筋使笔尖P在直线AB上方的抛物线上移动,动点P与A,B两点构成无数个三角形,在这些三角形中是否存在一个面积最大的三角形?如果存在,求出最大面积,并指出此时点P的坐标;如果不存在,请简要说明理由.

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网