题目内容
对于下面每个三角形,过顶点A作出三角形的中线、角平分线和高.
已知二次函数y=x2+4x+k-1.
(1)若抛物线与x轴有两个不同的交点,求k的取值范围;
(2)若抛物线的顶点在x轴上,求k的值.
一组数:1,-2,3,-4,5,-6,…99,-100,这100个数的和等于 .
将2016加上它本身的的相反数,再将这个结果加上其的相反数,再将上述结果加上其的相反数,…,如此继续.操作2015次后所得的结果是( )
A. 0 B. 1 C. D. 2015
如图在△AFD和△CEB中,点A、E、F、C在同一条直线上.有下面四个论断:
(1)AD=CB,(2)AE=CF,(3)∠B=∠D,(4)AD∥BC.
请用其中三个作为条件,余下一个作为结论,进行证明.
将一副直角三角板按图11-14摆放,点C在EF上,AC经过点D.已知∠A=∠EDF=90°,AB=AC,∠E=30°,∠BCE=40°.求∠CDF的度数.
如图,已知∠1=∠2,要说明△ABD≌△ACD还需从下列条件中选一个,错误选法是( )
A. ∠ADB=∠ADC B. ∠B=∠C C. DB=DC D. AB=AC
二次函数y=-6x2,当x1>x2>0时,y1与y2的大小关系为__________.
(本题10分)某物体从P点运动到Q点所用时间为7秒,其运动速度v(米每秒)关于时间t(秒)的函数关系如图所示,某学习小组经过探究发现:该物体前进3秒运动的路程在数值上等于矩形AODB的面积.由物理学知识还可知:该物体前n(3<n≤7)秒运动的路程在数值上等于矩形AODB的面积与梯形BDNM的面积之和.
根据以上信息,完成下列问题:
(1) 当3<n≤7时,用含t的式子表示v;
(2) 分别求该物体在0≤t≤3和3<n≤7时,运动的路程s(米)关于时间t(秒)的函数关系式;并求该物体从P点运动到Q总路程的时所用的时间.