题目内容

在△ABC中,若∠A、∠B满足|cosA-数学公式|+(sinB-数学公式2=0,则∠C=


  1. A.
    45°
  2. B.
    60°
  3. C.
    75°
  4. D.
    105°
C
分析:根据绝对值及偶次方的非负性,可得出cosA及sinB的值,从而得出∠A及∠B的度数,利用三角形的内角和定理可得出∠C的度数.
解答:∵|cosA-|+(sinB-2=0,
∴cosA=,sinB=
则∠A=60°,∠B=45°,
故∠C=180°-∠A-∠B=75°.
故选C.
点评:本题考查了特殊角的三角函数值及非负数的性质,解答本题的关键是得出cosA及sinB的值,另外要求我们熟练掌握一些特殊角的三角函数值.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网