题目内容
如图,正方形内接于半径为2的,则图中阴影部分的面积为( )
A. B. C. D.
如图,已知二次函数y=ax2+bx+4的图象与x轴交于点B(-2,0),点C(8,0),与y轴交于点A.
(1)求二次函数y=ax2+bx+4的表达式;
(2)连接AC,AB,若点N在线段BC上运动(不与点B,C重合),过点N作NM∥AC,交AB于点M,当△AMN面积最大时,求N点的坐标;
(3)连接OM,在(2)的结论下,求OM与AC的数量关系.
如图,内接于,若,则 .
如图,在平面直角坐标系中,直线交轴于点,交反比例函数的图象于点,的图象过矩形的顶点,矩形的面积为4,连接.
(1)求反比例函数的表达式;
(2)求的面积.
如图,四边形与四边形相似,位似中心点是,,则 .
.一个不透明的盒子里有个除颜色外其他完全相同的小球,其中有9个黄球,每次摸球前先将盒子里的球摇匀,任意摸出一个球记下颜色后再放回盒子,通过大量重复摸球实验后发现,摸到黄球的频率稳定在,那么估计盒子中小球的个数为( )
A.20 B.24 C.28 D.30
如图,抛物线l:y=(x﹣h)2﹣2与x轴交于A,B两点(点A在点B的左侧),将抛物线ι在x轴下方部分沿轴翻折,x轴上方的图象保持不变,就组成了函数?的图象.
(1)若点A的坐标为(1,0).
①求抛物线l的表达式,并直接写出当x为何值时,函数?的值y随x的增大而增大;
②如图2,若过A点的直线交函数?的图象于另外两点P,Q,且S△ABQ=2S△ABP,求点P的坐标;
(2)当2<x<3时,若函数f的值随x的增大而增大,直接写出h的取值范围.
如图,直线ι是一次函数y=kx+b的图象,若点A(3,m)在直线ι上,则m的值是( )
A.﹣5 B. C. D.7
解不等式组,并写出该不等式组的最大整数解.