题目内容

如图,在△ABC中,∠BAC=90°,AD⊥BC于点D,BE平分∠ABC交AD于点F,交AC于点E.求证:△AEF为等腰三角形.
分析:由在△ABC中,∠BAC=90°,AD⊥BC,易得∠BAD=∠C,又由BE平分∠ABC,∠AFE=∠ABF+∠BAD,∠AEF=∠CBE+∠C,即可证得∠AFE=∠AEF,继而证得:△AEF为等腰三角形.
解答:证明:∵在△ABC中,∠BAC=90°,AD⊥BC,
∴∠BAD+∠CAD=90°,∠CAD+∠C=90°,
∴∠BAD=∠C,
∵BE平分∠ABC,
∴∠ABF=∠CBE,
∵∠AFE=∠ABF+∠BAD,∠AEF=∠CBE+∠C,
∴∠AFE=∠AEF,
∴AF=AE,
即△AEF为等腰三角形.
点评:此题考查了等腰三角形的判定、直角三角形的性质以及三角形外角的性质.此题难度适中,注意掌握数形结合思想的应用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网