题目内容
如图,E、F是平行四边形ABCD的对角线AC上的两点,AE=CF.求证:DE=BF.
【答案】分析:连接BE,DF,BD,BD交AC于O,根据平行四边形性质求出OA=OC,OD=OB,推出OE=OF,根据平行四边形的判定推出四边形BEDF是平行四边形即可.
解答:
证明:连接BE,DF,BD,BD交AC于O,
∵四边形ABCD是平行四边形,
∴OA=OC,OD=OB,
∵AE=CF,
∴OE=OF,
∴四边形BEDF是平行四边形,
∴DE=BF.
点评:本题考查了平行四边形的性质和判定等应用,关键是能熟练地运用平行四边形的性质和判定进行推理,此题的证明方法二是证△AED≌△CFB,推出DE=BF.
解答:
∵四边形ABCD是平行四边形,
∴OA=OC,OD=OB,
∵AE=CF,
∴OE=OF,
∴四边形BEDF是平行四边形,
∴DE=BF.
点评:本题考查了平行四边形的性质和判定等应用,关键是能熟练地运用平行四边形的性质和判定进行推理,此题的证明方法二是证△AED≌△CFB,推出DE=BF.
练习册系列答案
相关题目