题目内容
在△ABC中,∠C=90°,AC=6cm,BC=8cm,扇形ODF与BC边相切,切点是E,若FO⊥AB于点O.求扇形ODF的半径.
解:连接OE,如图所示:

设扇形ODF的半径为rcm.
在Rt△ACB中,AC=6cm,BC=8cm,
∴AB=
=10cm,…
∵扇形ODF与BC边相切,切点是E,
∴OE⊥BC,
∵∠AOF=∠ACB=90°,又∠A=∠A,
∴△AOF∽△ACB.
∴
=
,即
=
,
解得:AO=
r,…
∵OE∥AC,
∴∠BOE=∠BAC,∠OEB=∠ACB,
∴△BOE∽△BAC,又OB=AB-OA=10-
,
∴
=
,即
=
,
解得:r=
.…
分析:连接OE,设扇形ODF的半径为r,在直角三角形ABC中,由AC及BC的长,利用勾股定理求出AB的长,再由扇形ODF与BC相切,得到OE垂直于BC,由OF与AB垂直及AC于BC垂直得到两对直角相等,再由一对公共角相等,利用两对对应角相等的两三角形相似可得出三角形AOF与三角形ACB相似,由相似得比例,将AC,BC及设出的半径r代入,表示出AO的长,又AC垂直于BC,可得出OE与AC平行,根据两直线平行同位角相等可得出两对对应角相等,根据两对对应角相等的两三角形相似可得出三角形BOE与三角形ACB相似,根据相似得比例将AB,AC,表示出的OB及OE代入,得到关于r的方程,求出方程的解即可得到半径r的值.
点评:此题考查了切线的性质,相似三角形的判定与性质,勾股定理,以及平行线的性质,熟练掌握切线的性质是解本题的关键.
设扇形ODF的半径为rcm.
在Rt△ACB中,AC=6cm,BC=8cm,
∴AB=
∵扇形ODF与BC边相切,切点是E,
∴OE⊥BC,
∵∠AOF=∠ACB=90°,又∠A=∠A,
∴△AOF∽△ACB.
∴
解得:AO=
∵OE∥AC,
∴∠BOE=∠BAC,∠OEB=∠ACB,
∴△BOE∽△BAC,又OB=AB-OA=10-
∴
解得:r=
分析:连接OE,设扇形ODF的半径为r,在直角三角形ABC中,由AC及BC的长,利用勾股定理求出AB的长,再由扇形ODF与BC相切,得到OE垂直于BC,由OF与AB垂直及AC于BC垂直得到两对直角相等,再由一对公共角相等,利用两对对应角相等的两三角形相似可得出三角形AOF与三角形ACB相似,由相似得比例,将AC,BC及设出的半径r代入,表示出AO的长,又AC垂直于BC,可得出OE与AC平行,根据两直线平行同位角相等可得出两对对应角相等,根据两对对应角相等的两三角形相似可得出三角形BOE与三角形ACB相似,根据相似得比例将AB,AC,表示出的OB及OE代入,得到关于r的方程,求出方程的解即可得到半径r的值.
点评:此题考查了切线的性质,相似三角形的判定与性质,勾股定理,以及平行线的性质,熟练掌握切线的性质是解本题的关键.
练习册系列答案
相关题目
在△ABC中,∠C=90°,BC=12,AB=13,则tanA的值是( )
A、
| ||
B、
| ||
C、
| ||
D、
|
在△ABC中,a=
,b=
,c=2
,则最大边上的中线长为( )
| 2 |
| 6 |
| 2 |
A、
| ||
B、
| ||
| C、2 | ||
| D、以上都不对 |