题目内容

已知一个圆锥的轴截面△ABC是等边三角形,它的表面积75πcm2,求这个圆锥的底面半径和母线的长.
分析:根据圆锥的母线即为扇形半径,圆锥底面圆的周长等于扇形弧长,假设底面半径为r,则圆锥的母线即为扇形半径为2r,利用圆锥表面积公式求出即可.
解答:解:设这个圆锥的底面半径为rcm,则母线的长为2rcm,
利用表面积为75π的扇形,∵圆锥的母线即为扇形半径,圆锥底面圆的周长等于扇形弧长,
∴扇形面积+底面圆的面积=圆锥表面积.
1
2
×2πr×2r+πr2=75π,
解得:r=5
∴2r=10
这个圆锥的底面半径为5,母线的长为10
点评:此题主要考查了圆锥的面积公式以及扇形与圆锥各部分的对应情况,根据圆锥的母线即为扇形半径,圆锥底面圆的周长等于扇形弧长得出是解题关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网