题目内容

如图,在?ABCD中,AB=6,AD=9,∠BAD的平分线交BC于点E,交DC的延长线于点F,BG⊥AE,垂足为G,BG=数学公式,则EF的长为


  1. A.
    4
  2. B.
    3
  3. C.
    2
  4. D.
    1.5
C
分析:由于AE平分∠BAD,那么∠BAE=∠DAE,由AD∥BC,可得内错角∠DAE=∠BEA,等量代换后可证得AB=BE,即△ABE是等腰三角形,且腰长为6,在Rt△BEG中,由勾股定理可求得GE的值,进而可得AE的长;易证得△ABE∽△FCE,根据相似三角形得到的比例线段即可求得EF的值.
解答:∵AE平分∠BAD,
∴∠DAE=∠BAE;
又∵AD∥BC,
∴∠BEA=∠DAE=∠BAE,即AB=BE;
等腰△ABE中,BE=6,BG=4,由勾股定理可得:GE==2,
故AE=2GE=4;
∵AB∥CF,
∴△ABE∽△FCE,


∴EF=2.
故选C.
点评:此题主要考查了角平分线的性质、平行四边形的性质以及相似三角形的判定和性质,能够发现△ABE是等腰三角形是解决此题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网