题目内容
在三角形纸片ABC中,已知∠ABC=90°,AB=6,BC=8.过点A作直线l平行于BC,折叠三角形纸片ABC,使直角顶点B落在直线l上的T处,折痕为MN.当点T在直线l上移动时,折痕的端点M、N也随之移动.若限定端点M、N分别在AB、BC边上移动,则线段AT长度的最大值与最小值之和为________ (计算结果不取近似值).
14-2
分析:关键在于找到两个极端,即AT取最大或最小值时,点M或N的位置.经实验不难发现,分别求出点M与A重合时,AT取最大值6和当点N与C重合时,AT的最小值8-2
.所以可求线段AT长度的最大值与最小值之和.
解答:
解:当点M与A重合时,AT取最大值是6,
当点N与C重合时,由勾股定理得此时AT取最小值为8-
=8-2
.
所以线段AT长度的最大值与最小值之和为:6+8-2
=14-2
.
故答案为:14-2
.
点评:本题考查了学生的动手能力及图形的折叠、勾股定理的应用等知识,难度稍大,学生主要缺乏动手操作习惯,单凭想象容易造成错误.
分析:关键在于找到两个极端,即AT取最大或最小值时,点M或N的位置.经实验不难发现,分别求出点M与A重合时,AT取最大值6和当点N与C重合时,AT的最小值8-2
解答:
当点N与C重合时,由勾股定理得此时AT取最小值为8-
所以线段AT长度的最大值与最小值之和为:6+8-2
故答案为:14-2
点评:本题考查了学生的动手能力及图形的折叠、勾股定理的应用等知识,难度稍大,学生主要缺乏动手操作习惯,单凭想象容易造成错误.
练习册系列答案
相关题目