题目内容
分析:连OA,由AC=AB,∠BAC=90°,根据等腰直角三角形的性质得OA=OB,OA平分∠BAC,∠B=45°,并且AO⊥BC,则∠NAO=∠B=45°,根据全等三角形的判定得到△NAO≌△MBO,则 ON=OM,∠AON=∠BOM,又∠BOM+∠AOM=90°,得到∠AON+∠AOM=90°,于是可判断△OMN是等腰直角三角形.
解答:证明:△OMN为等腰直角三角形.理由如下:
连接OA
,如图,
∵AC=AB,∠BAC=90°,
∴OA=OB,OA平分∠BAC,∠B=45°,
∴∠NAO=45°,
∴∠NAO=∠B,
在△NAO和△MBO 中,
,
∴△NAO≌△MBO,
∴ON=OM,∠AON=∠BOM,
∵AC=AB,O是BC的中点,
∴AO⊥BC,
即∠BOM+∠AOM=90°,
∴∠AON+∠AOM=90°,
即∠NOM=90°,
∴△OMN是等腰直角三角形.
连接OA
∵AC=AB,∠BAC=90°,
∴OA=OB,OA平分∠BAC,∠B=45°,
∴∠NAO=45°,
∴∠NAO=∠B,
在△NAO和△MBO 中,
|
∴△NAO≌△MBO,
∴ON=OM,∠AON=∠BOM,
∵AC=AB,O是BC的中点,
∴AO⊥BC,
即∠BOM+∠AOM=90°,
∴∠AON+∠AOM=90°,
即∠NOM=90°,
∴△OMN是等腰直角三角形.
点评:本题考查了全等三角形的判定与性质:有两组边对应相等,并且它们的夹角也相等的两三角形全等;全等三角形的对应边相等、对应角相等.也考查了等腰直角三角形的性质与判定.
练习册系列答案
相关题目