题目内容

【题目】如图,CD⊥AB于D,点F是BC上任意一点,FE⊥AB于E,且∠1=∠2,∠3=80°.

(1)试证明∠B=∠ADG;
(2)若CD平分∠BCA,求∠1的度数.

【答案】
(1)证明:∵CD⊥AB,EF⊥AB,

∴∠CDE=∠FEB=90°,

∴CD∥EF,

∴∠2=∠DCB,

∵∠1=∠2,

∴∠1=∠DCB,

∴DG∥BC,

∴∠B=∠ADG


(2)解:∵DG∥BC,

∴∠BCA=∠3=80°,

∵CD 平分∠BCA,

∴∠FCD=40°=∠1,

即∠1=40°


【解析】(1)由垂直可证明CD∥EF,进一步可证明DG∥BC,可得到∠B=∠ADG;(2)根据平行线的性质得到∠BCA=∠3=80°,由CD 平分∠BCA,得到∠FCD=40°=∠1.
【考点精析】利用平行线的判定与性质对题目进行判断即可得到答案,需要熟知由角的相等或互补(数量关系)的条件,得到两条直线平行(位置关系)这是平行线的判定;由平行线(位置关系)得到有关角相等或互补(数量关系)的结论是平行线的性质.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网