题目内容

四边形ABCD与四边形A'B'C'D'位似,O为位似中心,若OA:OA'=2:3,那么SABCCD:SA'B'C'D'=________.

4:9
分析:四边形ABCD与四边形A'B'C'D'位似,四边形ABCD∽四边形A'B'C'D'位似,可知AD∥A′D′,△OAD∽△OA′D′,求出相似比从而求得SABCCD:SA'B'C'D'=4:9.
解答:∵四边形ABCD与四边形A'B'C'D'位似
∴四边形ABCD∽四边形A'B'C'D'位似
∴AD∥A′D′
∴△OAD∽△OA′D′
∴OA:O′A′=AD:A′D′=2:3
∴SABCCD:SA'B'C'D'=4:9.
点评:本题考查了位似的相关知识,位似是相似的特殊形式,位似比等于相似比,其对应的面积比等于相似比的平方.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网