题目内容
在锐角△ABC中,∠A=75°,sinC=
【答案】分析:sinC=
,可求出∠C的值;利用内角和是180°求出∠B.
解答:解:在锐角△ABC中,
∵sinC=
,
∴∠C=60°.
∴∠B=180°-75°-60°=45°.
点评:考查了特殊角的三角函数值及三角形内角和定理.
解答:解:在锐角△ABC中,
∵sinC=
∴∠C=60°.
∴∠B=180°-75°-60°=45°.
点评:考查了特殊角的三角函数值及三角形内角和定理.
练习册系列答案
相关题目
在锐角△ABC中,a、b、c分别表示为∠A、∠B、∠C的对边,O为其外心,则O点到三边的距离之比为( )
| A、a:b:c | ||||||
B、
| ||||||
| C、cosA:cosB:cosC | ||||||
| D、sinA:sinB:sinC |