题目内容
在平面直角坐标系中,O为原点,点A(4,0),点B(0,3)把△ABO绕点B逆时针旋转90°,得△A′BO′,点A、O旋转后的对应点为A′、O′,那么AA′的长为 .
使有意义的x的取值范围是 .
如图,一条抛物线经过(﹣2,5),(0,﹣3)和(1,﹣4)三点.
(1)求此抛物线的函数解析式.
(2)假如这条抛物线与x轴交于点A,B,与y轴交于点C,试判断△OCB的形状.
方程x2=2x的解是( )
A.x=0 B.x=2 C.x=0或x=2 D.x=±
学生甲与学生乙学习概率初步知识后设计了如下游戏:学生甲手中有6,8,10三张扑克牌,学生乙手中有5,7,9三张扑克牌,每人从各自手中取一张牌进行比较,数字大的为本局获胜,每次获取的牌不能放回.
(1)若每人随机取手中的一张牌进行比较,请列举出所有情况;
(2)并求学生乙本局获胜的概率.
过以下四边形的四个顶点不能作一个圆的是( )
A. 等腰梯形
B.矩形
C.直角梯形
D.对角是90°的四边形
下列随机事件的概率,既可以用列举法求得,又可以用频率估计获得的是( )
A.某种幼苗在一定条件下的移植成活率
B.某种柑橘在某运输过程中的损坏率
C.某运动员在某种条件下“射出9环以上”的概率
D.投掷一枚均匀的骰子,朝上一面为偶数的概率
如图,AB是⊙O的直径,C,D是⊙O上的点,且OC∥BD,AD分别与BC,OC相交于点E,F,则下列结论:①AD⊥BD;②∠AOC=∠AEC;③BC平分∠ABD;④AF=DF;⑤BD=2OF.其中正确结论的个数是( )
A.2 B.3 C.4 D.5
如图,在△ABC中,点D,E分别是边AB,AC的中点,设=,=.
(1)填空:向量= .(用向量,的式子表示).
(2)在图中作出向量在向量,方向上的分向量(不要求写作法,但要指出所作图中表示结论的向量).