题目内容
已知y=-x(x+3-a)+1是关于x的二次函数,当x的取值范围在1≤x≤5时,y在x=1时取得最大值,则实数a的取值范围是( )
A. a=9 B. a=5 C. a≤9 D. a≤5
下列各式中的最简二次根式是( )
A. B. C. D.
平面内的两条直线有相交和平行两种位置关系.
(1)AB∥CD.如图1,点P在AB,CD外部时,由AB∥CD,有∠B=∠BOD.又因为∠BOD是△POD的外角,故∠BOD=∠BPD +∠D ,得∠BPD=∠B-∠D.如图2,将点P移到AB,CD内部,以上结论是否成立?若不成立,则∠BPD,∠B,∠D之间有何数量关系?请证明你的结论.
(2)在图2中,将直线AB绕点B按逆时针方向旋转一定角度交直线CD于点Q,如图3,则∠BPD,∠B,∠D,∠BQD之间有何数量关系?说明理由.
(3)根据(2)的结论,求图4中∠A+∠B+∠C+∠D+∠E+∠F的度数.
等腰三角形的两边长为3和6,则此等腰三角形的周长为( )
A. 12或15 B. 12 C. 15 D. 18
草莓是云南多地盛产的一种水果,今年某水果销售店在草莓销售旺季,试销售成本为每千克20元的草莓,规定试销期间销售单价不低于成本单价,也不高于每千克40元.经试销发现,销售量y(千克)与销售单价x(元)符合一次函数关系,如图所示是y与x的函数关系图象.
(1)求y与x的函数解析式;
(2)设该水果销售店试销草莓获得的利润为W元,求W的最大值.
设a,b是任意两个不等实数,我们规定:满足不等式a≤x≤b的实数x的所有取值的全体叫作闭区间,表示为[a,b].对于任何一个二次函数,它在给定的闭区间上都有最小值.
(1)函数y=-x ²+4x-2在区间[0,5]上的最小值是________;
(2)求函数y=+在区间上的最小值.
观察并探求下列各问题:
(1)如图①,在△ABC中,P为边BC上一点,则BP+PC__ __AB+AC(填“>”“<”或“=”).
(2)将(1)中的点P移到△ABC内,得图②,试观察比较△BPC的周长与△ABC的周长的大小,并说明理由.
(3)将(2)中的点P变为两个点P1,P2,得图③,试观察比较四边形BP1P2C的周长与△ABC的周长的大小,并说明理由.
如图,抛物线y=-x2+2x+3与y轴交于点C,点D(0,1),点P是抛物线上的动点.若△PCD是以CD为底的等腰三角形,则点P的坐标为____________.
如图,已知BD,CE是△ABC的高线,点F在BD上,BF=AC,点G在CE的延长线上,CG=AB.求证:AG⊥AF.