题目内容
抛物线y=ax2+bx+c过点A(1,0),B(3,0),则此抛物线的对称轴是直线x= .
【答案】分析:抛物线过点A(1,0),B(3,0),纵坐标相等,它们是抛物线上的对称点,其对称轴是两点横坐标的平均数.
解答:解:∵点A(1,0),B(3,0)的纵坐标相等,
∴A、B两点是抛物线上的两个对称点,
∴对称轴是直线x=
=2.
点评:解答此题利用二次函数的对称性容易解决.
解答:解:∵点A(1,0),B(3,0)的纵坐标相等,
∴A、B两点是抛物线上的两个对称点,
∴对称轴是直线x=
点评:解答此题利用二次函数的对称性容易解决.
练习册系列答案
相关题目
已知点(2,8)在抛物线y=ax2上,则a的值为( )
| A、±2 | ||
B、±2
| ||
| C、2 | ||
| D、-2 |
若(2,0)、(4,0)是抛物线y=ax2+bx+c上的两个点,则它的对称轴是直线( )
| A、x=0 | B、x=1 | C、x=2 | D、x=3 |