题目内容
求证:(1)
| AB |
| AF |
分析:(1)等腰△ABE中,∠BAD=∠ABE;由同角的余角相等知,∠BAD=∠C,故有∠C=∠ABF.由圆周角定理知,
=
;
(2)由于∠EAH=∠AHB,可得出AE=EH=BE=
BH,易证得Rt△ABH∽Rt△ACB.则AH:AB=BH:BC,即AH•BC=2AB•BE.
| AB |
| AF |
(2)由于∠EAH=∠AHB,可得出AE=EH=BE=
| 1 |
| 2 |
解答:证明:(1)∵AE=BE,
∴∠BAD=∠ABE,
∵BC是直径,AD⊥BC,
∴∠ADB=∠BAC=90°,
∴∠ABD+∠BAD=∠ABC+∠C=90°,
∴∠BAD=∠C,
∴∠C=∠ABF,
∴
=
;
(2)∵∠C=∠ABF,
Rt△ABH∽Rt△ACB,
∴AH:BH=AB:BC,即AH•BC=AB•BH,
∵∠EAH+∠BAD=∠AHB+∠ABH=90°,∠BAD=∠ABE,
∴∠EAH=∠AHB,
∴AE=EH=BE=
BH,
∴AH•BC=2AB•BE.
∴∠BAD=∠ABE,
∵BC是直径,AD⊥BC,
∴∠ADB=∠BAC=90°,
∴∠ABD+∠BAD=∠ABC+∠C=90°,
∴∠BAD=∠C,
∴∠C=∠ABF,
∴
| AB |
| AF |
(2)∵∠C=∠ABF,
Rt△ABH∽Rt△ACB,
∴AH:BH=AB:BC,即AH•BC=AB•BH,
∵∠EAH+∠BAD=∠AHB+∠ABH=90°,∠BAD=∠ABE,
∴∠EAH=∠AHB,
∴AE=EH=BE=
| 1 |
| 2 |
∴AH•BC=2AB•BE.
点评:本题考查了等腰三角形的性质、圆周角定理、相似三角形的判定和性质等知识的综合应用.
练习册系列答案
相关题目