题目内容
如图,已知P是⊙O外一点,PO交圆O于点C,OC=CP=2,弦AB⊥OC,劣弧AB的度数为120°,连接PB.
(1)求BC的长;
(2)求证:PB是⊙O的切线.
一辆汽车匀速通过某段公路,所需时间与行驶速度满足函数关系:,其图象为如图所示的一段曲线,且端点为和,则________和________;若行驶速度不得超过,则汽车通过该路段最少需要________小时.
如果两个不相等的角的和为,则这两个角可能是( )
A. 一个小于直角,一个大于直角 B. 两个大于直角的角
C. 两个小于直角的角 D. 以上答案都不对
操作:小明准备制作棱长为1cm的正方体纸盒,现选用一些废弃的圆形纸片进行如下设计:
说明:方案一:图形中的圆过点A、B、C;
方案二:直角三角形的两直角边与展开图左下角的正方形边重合,斜边经过两个正方形的顶点.
纸片利用率=×100%
发现:(1)方案一中的点A、B恰好为该圆一直径的两个端点.
你认为小明的这个发现是否正确,请说明理由.
(2)小明通过计算,发现方案一中纸片的利用率仅约为38.2%.
请帮忙计算方案二的利用率,并写出求解过程.
探究:
(3)小明感觉上面两个方案的利用率均偏低,又进行了新的设计(方案三),请直接写出方案三的利用率.
如图,已知正三角形ABC的边长AB是480毫米.一质点D从点B出发,沿BA方向,以每秒钟10毫米的速度向点A运动.
(1)建立合适的直角坐标系,用运动时间t(秒)表示点D的坐标;
(2)过点D在三角形ABC的内部作一个矩形DEFG,其中EF在BC边上,G在AC边上.在图中找出点D,使矩形DEFG是正方形(要求所表达的方式能体现出找点D的过程);
(3)过点D、B、C作平行四边形,当t为何值时,由点C、B、D、F组成的平行四边形的面积等于三角形ADC的面积,并求此时点F的坐标.
如图所示,AB是⊙O的直径,点C在AB的延长线上,CD与⊙O相切于点D,若∠C=20°,则∠CDA=___.
如图,AB是⊙O的直径,PA切⊙O于点A,连接PO并延长交⊙O于点C,连接AC,AB=10,∠P=30°,则AC的长度是( )
A. 5 B. 5 C. 5 D.
如图,在边长为的小正方形组成的网络中,的顶点均在格点上,请按要求完成下列各题:
以直线为对称轴作的轴对称图形,得到,再将绕着点顺时针旋转,得到,请依次画出、;
请画出一个格点,使,且相似比不为.
如图,正方形中,点,分别在,上,且为等边三角形,下列结论:
①;②;③;④.
其中正确的结论个数有( )
A. 1个 B. 2个 C. 3个 D. 4个