题目内容
如图,在Rt△ABC中,∠C=90°,AC=3,AB=5.点P从点C出发沿CA以每秒1个单位长的速度向点A匀速运动,到达点A后立刻以原来的速度沿AC返回;点Q从点A出发沿AB以每秒1个单位长的速度向点B匀速运动.伴随着P、Q的运动,DE保持垂直平分PQ,且交PQ于点D,交折线QB-BC-CP于点E.点P、Q同时出发,当点Q到达点B时停止运动,点P也随之停止.设点P、Q运动的时间是t秒(t>0).(1)当t=2时,AP=______,点Q到AC的距离是______;
(2)在点P从C向A运动的过程中,求△APQ的面积S与t的函数关系式;(不必写出t的取值范围)
(3)在点E从B向C运动的过程中,四边形QBED能否成为直角梯形?若能,求t的值;若不能,请说明理由;
(4)当DE经过点C时,请直接写出t的值.
【答案】分析:(1)先求PC,再求AP,然后求AQ,再由三角形相似求Q到AC的距离;
(2)作QF⊥AC于点F,先求BC,再用t表示QF,然后得出S的函数解析式;
(3)当DE∥QB时,得四边形QBED是直角梯形,由△APQ∽△ABC,由线段的对应比例关系求得t,由PQ∥BC,四边形QBED是直角梯形,△AQP∽△ABC,由线段的对应比例关系求t;
(4)①第一种情况点P由C向A运动,DE经过点C、连接QC,作QG⊥BC于点G,由PC2=QC2解得t;
②第二种情况,点P由A向C运动,DE经过点C,由图列出相互关系,求解t.
解答:
解:(1)做QF⊥AC,
∵AC=3,点P从点C出发沿CA以每秒1个单位长的速度向点A匀速运动,
∴当t=2时,AP=3-2=1;
∵QF⊥AC,BC⊥AC,
∴QF∥BC,
∴△ACB∽△AFQ,
∴
,
∴
,
解得:QF=
;
故答案为:1,
;
(2)作QF⊥AC于点F,
如图1,AQ=CP=t,
∴AP=3-t.
由△AQF∽△ABC,BC=
=4,
得
.
∴
.
∴S=
(3-t)•
,
即S=
;
(3)能.
①当由△APQ∽△ABC,DE∥QB时,如图2.
∵DE⊥PQ,
∴PQ⊥QB,四边形QBED是直角梯形,
此时∠AQP=90°.
由△APQ∽△ABC,得
,
即
.解得
;
②如图3,当PQ∥BC时,DE⊥BC,四边形QBED是直角梯形.
此时∠APQ=90°.
由△AQP∽△ABC,得
,
即
.
解得
,
综上:在点E从B向C运动的过程中,当t=
或
时,四边形QBED能成为直角梯形;
(4)t=
或t=
.
注:①点P由C向A运动,DE经过点C.
连接QC,作QG⊥BC于点G,如图4.
∵sinB=
=
=
,
∴QG=
(5-t),
同理BG=
(5-t),
∴CG=4-
(5-t),
∴PC=t,QC2=QG2+CG2=[
(5-t)]2+[4-
(5-t)]2.
∵CD是PQ的中垂线,
∴PC=QC
则PC2=QC2,
得t2=[
(5-t)]2+[4-
(5-t)]2,
解得t=
;
②点P由A向C运动,DE经过点C,如图5.
PC=6-t,可知由PC2=QC2可知,
QC2=QG2+CG2=(6-t)2=[
(5-t)]2+[4-
(5-t)]2,
即t=
.
点评:本题考查了相似三角形的判定定理,线段比的有关知识,利用二次函数的相关知识以及实际应用相结合,同时考生要注意巧妙利用辅助线的帮助解答,难度较大.
(2)作QF⊥AC于点F,先求BC,再用t表示QF,然后得出S的函数解析式;
(3)当DE∥QB时,得四边形QBED是直角梯形,由△APQ∽△ABC,由线段的对应比例关系求得t,由PQ∥BC,四边形QBED是直角梯形,△AQP∽△ABC,由线段的对应比例关系求t;
(4)①第一种情况点P由C向A运动,DE经过点C、连接QC,作QG⊥BC于点G,由PC2=QC2解得t;
②第二种情况,点P由A向C运动,DE经过点C,由图列出相互关系,求解t.
解答:
∵AC=3,点P从点C出发沿CA以每秒1个单位长的速度向点A匀速运动,
∴当t=2时,AP=3-2=1;
∵QF⊥AC,BC⊥AC,
∴QF∥BC,
∴△ACB∽△AFQ,
∴
∴
解得:QF=
故答案为:1,
(2)作QF⊥AC于点F,
如图1,AQ=CP=t,
∴AP=3-t.
由△AQF∽△ABC,BC=
得
∴
∴S=
即S=
(3)能.
①当由△APQ∽△ABC,DE∥QB时,如图2.
∵DE⊥PQ,
∴PQ⊥QB,四边形QBED是直角梯形,
此时∠AQP=90°.
由△APQ∽△ABC,得
即
②如图3,当PQ∥BC时,DE⊥BC,四边形QBED是直角梯形.
此时∠APQ=90°.
由△AQP∽△ABC,得
即
解得
综上:在点E从B向C运动的过程中,当t=
(4)t=
注:①点P由C向A运动,DE经过点C.
连接QC,作QG⊥BC于点G,如图4.
∵sinB=
∴QG=
同理BG=
∴CG=4-
∴PC=t,QC2=QG2+CG2=[
∵CD是PQ的中垂线,
∴PC=QC
则PC2=QC2,
得t2=[
解得t=
②点P由A向C运动,DE经过点C,如图5.
PC=6-t,可知由PC2=QC2可知,
QC2=QG2+CG2=(6-t)2=[
即t=
点评:本题考查了相似三角形的判定定理,线段比的有关知识,利用二次函数的相关知识以及实际应用相结合,同时考生要注意巧妙利用辅助线的帮助解答,难度较大.
练习册系列答案
相关题目