题目内容
下列四个几何体中,主视图、左视图与俯视图是全等图形的几何体是( )
A.球 B.圆柱 C.三棱柱 D.圆锥
方格纸中小正方形的顶点叫格点.点A和点B是格点,位置如图.
(1)在图1中确定格点C使△ABC为直角三角形,画出一个这样的△ABC;
(2)在图2中确定格点D使△ABD为等腰三角形,画出一个这样的△ABD;
(3)在图2中满足题(2)条件的格点D有 个.
父亲节,学校“文苑”专栏登出了某同学回忆父亲的小诗:“同辞家门赴车站,别时叮咛语千万,学子满载信心去,老父怀抱希望还.”如果用纵轴y表示父亲和学子在行进中离家的距离,横轴t表示离的时间,那么下面与上述诗意大致相吻合的图象是( )
请你写出一个反比例函数的解析式,使它的图象在第二、四象限 .
下列命题中,正确的是( )
A.四边相等的四边形是正方形
B.四角相等的四边形是正方形
C.对角线垂直的平行四边形是正方形
D.对角线相等的菱形是正方形
甲口袋中装有2个相同的小球,它们分别写有数字1和2;乙口袋中装有3个相同的小球,它们分别写有数字3,4和5,从两个口袋中各随机取出1个小球.用画树状图或列表的方法,求取出的2个小球上的数字之和为6的概率.
计算:4cos230°+cos45°﹣tan45°+2sin60°.
某商场要经营一种新上市的文具,进价为20元/件.试营销阶段发现:当销售单价是25元时,每天的销售量为250件;销售单价每上涨1元,每天的销售量就减少10件.
(1)写出商场销售这种文具,每天所得的销售利润w(元)与销售单价x(元)之间的函数关系式;
(2)求销售单价为多少元时,该文具每天的销售利润最大;
(3)商场的营销部结合上述情况,提出了A、B两种营销方案:
方案A:该文具的销售单价高于进价且不超过30元;
方案B:每天销售量不少于10件,且每件文具的利润至少为25元
请比较哪种方案的最大利润更高,并说明理由.
如图,点A为∠α边上的任意一点,作AC⊥BC于点C,CD⊥AB于点D,下列用线段比表示cosα的值,错误的是( )
A. B. C. D.