题目内容

已知方程组
x+y=3a+9
x-y=5a+1
的解为一正一负,求a的取值范围.
分析:求出方程组的解,根据已知得出两个不等式组,求出不等式组的解即可.
解答:解:
x+y=3a+9①
x-y=5a+1②

∵①+②得:2x=8a+10,
x=4a+5,
①-②得:2y=8-2a,
y=4-a,
∵方程组
x+y=3a+9
x-y=5a+1
的解为一正一负,
4a+5>0
4-a<0
4a+5<0
4-a>0

解不等式组得:a>4或a<-
5
4

即a的取值范围是a>4或a<-
5
4
点评:本题考查了解二元一次方程组和解一元一次不等式组的应用,关键是得出关于a的不等式组.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网