题目内容
(1)若x+y=2,且(x+2)(y+2)=5,求x2+xy+y2的值
(2)若x+y=6,x-y=4,求xy的值.
解:(1)∵x+y=2,(x+2)(y+2)=5,
∴xy+2x+2y+4=5,即xy+2(x+y)=1,
∴xy+4=1,
∴xy=-3,
∴x2+xy+y2=(x+y)2-xy=4+3=7;
(2)∵x+y=6,x-y=4,
∴(x+y)2=x2+y2+2xy=36①,(x-y)2=x2+y2-2xy=16②,
∴①-②得:4xy=20,
解得:xy=5.
分析:(1)首先将(x+2)(y+2)=5变形,可得xy+2(x+y)=1,然后将x+y=2代入,即可求得xy的值,再由x2+xy+y2=(x+y)2-xy即可求得答案;
(2)由x+y=6,x-y=4,即可求得:(x+y)2=x2+y2+2xy=36,(x-y)2=x2+y2-2xy=16,然后利用整体思想求解即可得到答案.
点评:此题考查了完全平方公式的应用.解题的关键是注意整体思想的应用.
∴xy+2x+2y+4=5,即xy+2(x+y)=1,
∴xy+4=1,
∴xy=-3,
∴x2+xy+y2=(x+y)2-xy=4+3=7;
(2)∵x+y=6,x-y=4,
∴(x+y)2=x2+y2+2xy=36①,(x-y)2=x2+y2-2xy=16②,
∴①-②得:4xy=20,
解得:xy=5.
分析:(1)首先将(x+2)(y+2)=5变形,可得xy+2(x+y)=1,然后将x+y=2代入,即可求得xy的值,再由x2+xy+y2=(x+y)2-xy即可求得答案;
(2)由x+y=6,x-y=4,即可求得:(x+y)2=x2+y2+2xy=36,(x-y)2=x2+y2-2xy=16,然后利用整体思想求解即可得到答案.
点评:此题考查了完全平方公式的应用.解题的关键是注意整体思想的应用.
练习册系列答案
相关题目