题目内容
把下列各式分解因式
将边长分别为1、1、2、3、5的正方形依次选取2个、3个、4个、5个拼成,按下面的规律依次记作①、②、③、④.若继续选取适当的正方形拼成,那么按此规律,⑧的周长应该为( )
A.288 B.220 C.178 D.110
如右上图,已知矩形ABCD中,P、R分别是BC、DC上的点,E、F分别的是PA、PR的中点,如果DR=3,AD = 4,则EF长为 .
如图1,在四边形ABCD中,AB=CD,E、F分别是BC、AD的中点,连接EF并延长,分别与BA、CD的延长线交于点M、N,则∠BME=∠CNE(不需证明).
(温馨提示:在图1中,连接BD,取BD的中点H,连接HE、HF,根据三角形中位线定理,证明HE=HF,从而∠1=∠2,再利用平行线性质,可证得∠BME=∠CNE.)
问题一:如图2,在四边形ADBC中,AB与CD相交于点O,AB=CD,E、F分别是BC、AD的中点,连接EF,分别交DC、AB于点M、N,判断△OMN的形状,并说明理由;
问题二:如图3,在△ABC中,AC>AB,D点在AC上,AB=CD,E、F分别是BC、AD的中点,连接EF并延长,与BA的延长线交于点G,若∠EFC=60°,连接GD,判断△AGD的形状并并说明理由.
( )3=8m6.
如图,将个边长都为1 cm的正方形按如图所示摆放,点,,…,分别是正方形的中心,则个这样的正方形重叠部分的面积和为·························· ( )
A.cm2 B.cm2 C.cm2 D.cm2