题目内容
分析:过点C作CP∥AB,然后利用两直线平行,内错角相等得到∠ABC+∠CED=∠BCP+∠ECP=∠BCE=140°;同理过点F作FM∥DE,则∠BFM=∠ABF,∠MFE=∠DEF,结合角平分线的性质就可求出∠BFE的度数.
解答:
解:如图,过点C作CP∥AB,则∠BCP=∠ABC,∠ECP=∠CED,
∴∠ABC+∠CED=∠BCP+∠ECP=∠BCE=140°;
又∵BF,EF分别平分∠ABC,∠CED,
∴∠ABF=
∠ABC,∠DEF=
∠DEC;
∴∠ABF+∠DEF=
(∠ABC+∠DEC)=70°,
过点F作FM∥DE,则∠BFM=∠ABF,∠MFE=∠DEF,
∴∠BFE=∠BFM+∠MFE=∠ABF+∠DEF=70°.
∴∠ABC+∠CED=∠BCP+∠ECP=∠BCE=140°;
又∵BF,EF分别平分∠ABC,∠CED,
∴∠ABF=
| 1 |
| 2 |
| 1 |
| 2 |
∴∠ABF+∠DEF=
| 1 |
| 2 |
过点F作FM∥DE,则∠BFM=∠ABF,∠MFE=∠DEF,
∴∠BFE=∠BFM+∠MFE=∠ABF+∠DEF=70°.
点评:本题主要考查作辅助线构造三条互相平行的直线,然后利用平行线的性质和角的和差关系求解.
练习册系列答案
相关题目