题目内容
计算:
(1) (2)
(3) (4)
已知A,B两件服装的成本共500元,鑫洋服装店老板分别以30%和20%的利润率定价后进行销售,该服装店共获利130元,问A,B两件服装的成本各是多少元?
定义:有一组邻边相等的凸四边形叫做“准菱形”.利用该定义完成以下各题:
(1) 理解
填空:如图1,在四边形ABCD中,若 (填一种情况),则四边形ABCD是“准菱形”;
(2)应用
证明:对角线相等且互相平分的“准菱形”是正方形;(请画出图形,写出已知,求证并证明)
(3) 拓展
如图2,在Rt△ABC中,∠ABC=90°,AB=2,BC=1,将Rt△ABC沿∠ABC的平分线BP方向平移得到△DEF,连接AD,BF,若平移后的四边形ABFD是“准菱形”,求线段BE的长.
某商场将每件进价为20元的玩具以30元的价格出售时,每天可售出300件.经调查当单价每涨1元时,每天少售出10件.若商场每天要获得3750元利润,则每件玩具应涨多少元?
这道应用题如果设每件玩具应涨x元,则下列说法错误的是( )
A. 涨价后每件玩具的售价是元; B. 涨价后每天少售出玩具的数量是件 C. 涨价后每天销售玩具的数量是件 D. 可列方程为:
在实数范围内分解因式: ________。
如果,那么( )
A. x≥0 B. x≥6 C. 0≤x≤6 D. x为一切实数
如图,在平面直角坐标系中,菱形OABC的面积为12,点B在y轴上,点C在反比例函数y=的图象上,则k的值为________.
已知(x+1)2+|y﹣|=0,求2(xy2+x2y)﹣[2xy2﹣3(1﹣x2y)]﹣2的值.