题目内容

如图,在Rt△ABC中,∠C=90°,cos∠CAB=数学公式,AC=8,延长CB到D使得BD=AB,连接AD,求AD的长.

解:∵在Rt△ABC中,∠C=90°,
∴cos∠CBA==
∵AC=8,
∴AB=10,
∴由勾股定理得:BC==6,
∴BD=AB=10,CD=BD+CB=16,
在Rt△ACD中,由勾股定理得:AD==8
分析:在Rt△ABC中,根据cos∠CBA==,求出AB,由勾股定理求出BC=6,求出BD和CD,根据AC和CD的长根据勾股定理即可求出AD.
点评:本题考查了解直角三角形和勾股定理的应用,关键是求出各个线段的长.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网