题目内容
(1)计算(1-
|
| 24 |
|
| 1 | ||
2-
|
(2)解方程
| 4 |
| x2-4 |
| 1 |
| x-2 |
分析:(1)根据
>1首先去掉根号,根据2-
的有理化因式为2+
化简
,把每个根式进行化简,然后合并同类二次根式即可;
(2)最简公分母是(x+2)(x-2),方程两边都乘最简公分母,可把分式方程转换为整式方程求解.
| 3 |
| 3 |
| 3 |
| 1 | ||
2-
|
(2)最简公分母是(x+2)(x-2),方程两边都乘最简公分母,可把分式方程转换为整式方程求解.
解答:解:(1)原式=(
-1)-2
+(2+
)=1;(6分)
(2)方程两边同乘以x2-4,得4-(x+2)=x2-4(2分)
即x2+x-6=0(3分)
解之得x1=-3,x2=2(4分)
经检验x=2是原方程的增根
所以原方程的根为x=-3(6分).
| 3 |
| 3 |
| 3 |
(2)方程两边同乘以x2-4,得4-(x+2)=x2-4(2分)
即x2+x-6=0(3分)
解之得x1=-3,x2=2(4分)
经检验x=2是原方程的增根
所以原方程的根为x=-3(6分).
点评:分式方程里单独的一个数和字母也必须乘最简公分母.解分式方程一定注意要代入最简公分母验根.
练习册系列答案
相关题目