题目内容
解方程:
(1)
;
(2)
.
解:(1)方程两边都乘以(x+1)(x-1)得,
3(x+1)-(x+3)=0,
解得x=0,
检验:当x=0时,(x+1)(x-1)=(0+1)(0-1)=-1≠0,
所以,原分式方程的解是x=0;
(2)方程两边都乘以2(x-2)得,
3-2x=x-2,
解得x=
,
检验:当x=
时,2(x-2)=2(
-2)≠0,
所以,原分式方程的解是x=
.
分析:(1)方程两边都乘以最简公分母(x+1)(x-1)把分式方程转化为整式方程求解,然后进行检验;
(2)方程两边都乘以最简公分母2(x-2)把分式方程转化为整式方程求解,然后进行检验.
点评:本题考查了解分式方程,(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.
3(x+1)-(x+3)=0,
解得x=0,
检验:当x=0时,(x+1)(x-1)=(0+1)(0-1)=-1≠0,
所以,原分式方程的解是x=0;
(2)方程两边都乘以2(x-2)得,
3-2x=x-2,
解得x=
检验:当x=
所以,原分式方程的解是x=
分析:(1)方程两边都乘以最简公分母(x+1)(x-1)把分式方程转化为整式方程求解,然后进行检验;
(2)方程两边都乘以最简公分母2(x-2)把分式方程转化为整式方程求解,然后进行检验.
点评:本题考查了解分式方程,(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.
练习册系列答案
相关题目