题目内容
如图,已知正方形ABCD的对角线长为,将正方形ABCD沿直线EF折叠,则图中阴影部分的周长为( )
A. B. C. 12 D. 9
化简:2x﹣x=______.
小明利用废纸板制作一个三棱柱形无盖的笔筒,设计三棱柱立体模型如图所示(有盖),有关数据已标注在图上.
(1)请画出该立体模型的三视图和展开图;
(2)制作该笔筒至少要用多少废纸板?
如图,在△ABC中,∠ABC=90°,BD为AC的中线,过点C作CE⊥BD于点E,过点A作BD的平行线,交CE的延长线于点F,在AF的延长线上截取FG =BD,连接BG、DF.若AF=8,CF=6,求四边形BDFG的周长.
若将方程化为的形式,则m=____,n=____.
方程 (x-5)(x+2)=0的解是 ( )
A. x=5 B. x=-2 C. x1=-5,x2=2 D. x1=5,x2=-2
在等边△ABC中:
(1)如图1,P,Q是BC边上的两点,AP=AQ,∠BAP=20°,求∠AQB的度数;
(2)点P,Q是BC边上的两个动点(不与点B,C重合),点P在点Q的左侧,且AP=AQ,点Q关于直线AC的对称点为M,连接AM,PM.
①依题意将图2补全;
②小茹通过观察、实验提出猜想:在点P,Q运动的过程中,始终有PA=PM,小茹把这个猜想与同学们进行交流,通过讨论,形成了证明该猜想的几种想法:
想法1:要证明PA=PM,只需证△APM是等边三角形;
想法2:在BA上取一点N,使得BN=BP,要证明PA=PM,只需证△ANP≌△PCM;
想法3:将线段BP绕点B顺时针旋转60°,得到线段BK,要证PA=PM,只需证PA=CK,PM=CK…
请你参考上面的想法,帮助小茹证明PA=PM(一种方法即可).
如图,在△ABC中,AB=AC,D为BC中点,∠BAD=35°,则∠C的度数为( )
A.35° B.45° C.55° D.60°
如图,在Rt△ABC中,∠ACB=90°,∠B=30°,AD平分∠CAB.
(1)求∠CAD的度数;
(2)延长AC至E,使CE=AC,求证:DA=DE.