题目内容
分析:根据角平分线上的点到角的两边的距离相等可得DE=CD,再根据等腰直角三角形的性质求出AC=BC=AE,然后求出△DBE的周长=AB,代入数据即可得解.
解答:解:∵AD平分∠CAB,DE⊥AB,∠C=90°,
∴DE=CD,
又∵AC=BC,AC=AE,
∴AC=BC=AE,
∴△DBE的周长=DE+BD+EB=CD+BD+EB=BC+EB=AE+EB=AB,
∵AB=6cm,
∴△DBE的周长=6cm.
故选B.
∴DE=CD,
又∵AC=BC,AC=AE,
∴AC=BC=AE,
∴△DBE的周长=DE+BD+EB=CD+BD+EB=BC+EB=AE+EB=AB,
∵AB=6cm,
∴△DBE的周长=6cm.
故选B.
点评:本题考查了角平分线上的点到角的两边的距离相等的性质,等腰直角三角形的性质,熟记性质求出△DBE的周长=AB是解题的关键.
练习册系列答案
相关题目