题目内容

若有理数在数轴上的位置如图所示,则化简|a+c|-|a-b|+|c+b|=
-2a-2c
-2a-2c
分析:根据数轴上点的位置判断出绝对值里边式子的正负,利用绝对值的代数意义化简,去括号合并即可得到结果.
解答:解:根据数轴可知:a+c<0,a-b>0,c+b<0,
则|a+c|-|a-b|+|c+b|=-(a+c)-(a-b)-(c+b)=-a-c-a+b-c-b=-2a-2c.
故答案为:-2a-2c
点评:此题考查了整式的加减,涉及的知识有:去括号法则,以及合并同类项法则,熟练掌握法则是解本题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网