题目内容
若矩形的面积为10,矩形的长为a,宽为b,则b关于a的函数图象大致是( )
A. B. C. D.
如图,隧道的截面由半圆和长方形构成,长方形的长BC为8m,宽AB为1m,该隧道内设双向行驶的车道(共有2条车道),若现有一辆货运卡车高4m,宽2.3m。则这辆货运卡车能否通过该隧道?说明理由.
点A(-3,y1),B(-2,y2),C(3,y3)都在反比例函数的图象上,则
已知正比例函数的图像与反比例函数 ()的图像交于点M(a,1),MN⊥x轴于点N,若⊿OMN的面积等于2,求这两个函数的解析式。
若点(1、)、(2、)都在反比例函数的图象上,则____;
阅读下列材料:利用完全平方公式,可以将多项式变形为的形式,我们把这样的变形方法叫做多项式的配方法.
运用多项式的配方法及平方差公式能对一些多项式进行分解因式.
例如:
根据以上材料,解答下列问题:
()用配方法及平方差公式把多项式进行分解因式.
()求证: , 取任何实数时,多项式的值总为正数.
计算: .
如图所示,三角形ABC三点坐标分别为A(-3,4),B(-4,1),C(-1,2).
(1)说明三角形ABC平移到三角形A1B1C1的过程,并求出点A1,B1,C1的坐标;
(2)由三角形ABC平移到三角形A2B2C2又是怎样平移的?并求出点A2,B2,C2的坐标.
某医药研究生开发了一种新药,在实验药效时发现,如果成人按规剂量服用,那么服用药后2h时血液中含药量最高,达每毫升6ug,接着逐步衰减,10h时血液中含药量每毫升3ug,每毫升血液中含药量y(ug)随时间x(h)的变化如图所示,当成人按规定剂量服药后.
(1)分别求出x≤2和x>2时,y与x之间的函数关系式;
(2)如果每毫升血液含药量为4ug或4ug以上时在治疗疾病时是有效的,那么这个有效时间是多长?每天至少吃几次药疗效最好?