题目内容
已知三角形的三边长分别是3,x,9,则化简|x-5|+|x-13|=___.
探索:小明和小亮在研究一个数学问题:已知AB∥CD,AB和CD都不经过点P,探索∠P与∠A,∠C的数量关系.
发现:在图1中,小明和小亮都发现:∠APC=∠A+∠C;
小明是这样证明的:过点P作PQ∥AB
∴∠APQ=∠A( )
∵PQ∥AB,AB∥CD.
∴PQ∥CD( )
∴∠CPQ=∠C
∴∠APQ+∠CPQ=∠A+∠C
即∠APC=∠A+∠C
小亮是这样证明的:过点作PQ∥AB∥CD.
∴∠APQ=∠A,∠CPQ=∠C
请在上面证明过程的过程的横线上,填写依据;两人的证明过程中,完全正确的是 .
应用:
在图2中,若∠A=120°,∠C=140°,则∠P的度数为 ;
在图3中,若∠A=30°,∠C=70°,则∠P的度数为 ;
拓展:
在图4中,探索∠P与∠A,∠C的数量关系,并说明理由.
某服装厂从20万件同类产品中随机抽取了100件进行质检,发现其中有2件不合格,那么你估计该厂这20万件产品中合格品约为________ 万件.
以下问题,不适合用普查的是( )
A. 了解全班同学每周体育锻炼的时间 B. 某中学调查全校753名学生的身高
C. 某学校招聘教师,对应聘人员面试 D. 鞋厂检查生产的鞋底能承受的弯折次数
如图,在△ABC中,AD是中线,则△ABD的面积 △ACD的 面积(填
“>”“<”“=”).
如图,将一块正方形纸片沿对角线折叠一次,然后在得到的三角形的三个角上各挖去一个圆洞,最后将正方形纸片展开,得到的图案是( )
A. B. C. D.
下列图形中,不一定是轴对称图形的是( )
A.等腰三角形 B.线段 C.钝角 D.直角三角形
如图,在菱形ABCD中,AB=6,∠DAB=60°,AE分别交BC、BD于点E、F,CE=2,连接CF,以下结论:①;②点E到AB的距离是;③;④△ABF的面积为.其中一定成立的有几个( )
A. 1个 B. 2个 C. 3个 D. 4个
推理填空:如图,已知∠B=∠CGF,∠DGF=∠F,试说明∠B+∠F=180°.
【解析】∵∠B=________(已知),
∴AB∥CD(______________________).
∵∠DGF=____________(已知),
∴CD∥EF(____________________).
∴AB∥EF(___________________).
∴∠B+______=180°(__________________).