题目内容
正方形ABCD的边长为4,点P是BC边上的动点,点E在AB边上,且∠EPB
=60°,沿PE翻折△EBP得到△EB′P.F是CD边上一点,沿PF翻折△FCP得到△FC′P,使点C′落在射线PB′上.
(1)如图,当BP=1时,四边形EB′FC′的面积为______;
(2)若BP=m,则四边形EB′FC′的面积为______(要求:用含m的代数式表示,并写出m的取值范围).
解:(1)∵BP=1,∠EPB=60°,
∴BE=B'E=
,C'P=CP=BC-BP=3,∠C'PF=∠CPF=30°,
∴C'F=CF=CP×tan∠CPF=
,C'B'=C'P-B'P=3-1=2,
故S四边形EB′FC′=S△EB'C'+S△B'C'F=
B'E×B'C'+
C'F×B'C'=
+
=2
;
(2))①∵BP=m,∠EPB=60°,
∴BE=B'E=
m,C'P=CP=BC-BP=4-m,∠C'PF=∠CPF=30°,
∴C'F=CF=CP×tan∠CPF=
(4-m),C'B'=C'P-B'P=4-m-m=4-2m,
故S四边形EB′FC′=S△EB'C'+S△B'C'F=
B'E×B'C'+
C'F×B'C'
=
×
m×(4-2m)+
×
(4-m)×(4-2m)
=-
m2+2
m+
m2-2
m+
=-
m2+
(0<m<2).
②当2<m≤
时,

EB'=EB=
m,B'C'=m-(4-m)=2m-4,FC'=
(4-m),
故S四边形EB′FC′=S△EB'c'+S△B'C'F=
B'E×B'C'+
C'F×B'C'
=
×
m×(2m-4)+
×(2m-4)×
(4-m)
=
m2-2
m+(m-2)×(
-
m)
=
m2-2
m+
m-
m2-
+
m
=
m2-
(2<m≤
).
故答案为:2
;-
m2+
(0<m<2),
m2-
(2<m≤
).
分析:(1)根据BP=1,∠EPB=60°,可得出BE=B'E=
,CP=C'P=4-1=3,也可得出C'F,继而根据S四边形EB′FC′=S△EB'C'+S△B'C'F可得出答案.
(2)将BP的长度换为m,按照(1)的思路分别求出各线段的长度,然后求面积即可.
点评:本题考查了正方形的性质及翻折变换的知识,利用解直角三角形的知识求出各线段的长度是解答本题的关键,另外要掌握翻折前后对应边、对应角分别相等.
∴BE=B'E=
∴C'F=CF=CP×tan∠CPF=
故S四边形EB′FC′=S△EB'C'+S△B'C'F=
(2))①∵BP=m,∠EPB=60°,
∴BE=B'E=
∴C'F=CF=CP×tan∠CPF=
故S四边形EB′FC′=S△EB'C'+S△B'C'F=
=
=-
=-
②当2<m≤
EB'=EB=
故S四边形EB′FC′=S△EB'c'+S△B'C'F=
=
=
=
=
故答案为:2
分析:(1)根据BP=1,∠EPB=60°,可得出BE=B'E=
(2)将BP的长度换为m,按照(1)的思路分别求出各线段的长度,然后求面积即可.
点评:本题考查了正方形的性质及翻折变换的知识,利用解直角三角形的知识求出各线段的长度是解答本题的关键,另外要掌握翻折前后对应边、对应角分别相等.
练习册系列答案
相关题目