题目内容
【题目】如图,在Rt△ABC中,∠ACB=90°AO是△ABC的角平分线.以O为圆心,OC为半径作⊙O.![]()
(1)求证:AB是⊙O的切线.
(2)已知AO角⊙O于点E,延长AO交⊙O于点D,tanD=
,求
的值.
(3)在(2)的条件下,设⊙O的半径为3,求AB的长.
【答案】
(1)证明:过点O作OF⊥AB于点F,
∵AO平分∠CAB,
OC⊥AC,OF⊥AB,
∴OC=OF,
∴AE是⊙O的切线;
![]()
(2)解:连接CE,
∵ED是⊙O的直径,
∴∠ECD=90°,
∴∠ECO+∠OCD=90°,
∵∠ACB=90°,
∴∠ACE+∠ECO=90°,
∴∠ACE=∠ODC,
∵OC=OD,
∴∠OCD=∠ODC,
∴∠ACE=∠ODC,
∵∠CAE=∠CAE,
∴△ACE∽△ADC,
∴
,
∵tan∠D=
,
∴
=
,
∴
=
;
![]()
(3)解:由(2)可知:
=
,
∴设AE=x,AC=2x,
∵△ACE∽△ADC,
∴
,
∴AC2=AEAD,
∴(2x)2=x(x+6),
解得:x=2或x=0(不合题意,舍去),
∴AE=2,AC=4,
由(1)可知:AC=AF=4,
∠OFB=∠ACB=90°,
∵∠B=∠B,
∴△OFB∽△ABC,
∴
,
设BF=a,
∴BC=
,
∴BO=BC﹣OC=
﹣3,
在Rt△BOF中,
BO2=OF2+BF2,
∴(
﹣3)2=32+a2,
∴解得:a=
或a=0(不合题意,舍去),
∴AB=AF+BF=
.
【解析】本题考查圆的综合问题,解题的关键是证明△ACE∽△ADC.本题涉及勾股定理,解方程,圆的切线判定知识,内容比较综合,需要学生构造辅助线才能解决问题,对学生综合能力要求较高.(1)由于题目没有说明直线AB与⊙O有交点,所以过点O作OF⊥AB于点F,然后证明OC=OF即可;(2)连接CE,先求证∠ACE=∠ODC,然后可知△ACE∽△ADC,所以
,而tan∠D=
=
;(3)由(2)可知,AC2=AEAD,所以可求出AE和AC的长度,由(1)可知,△OFB∽△ABC,所以
,然后利用勾股定理即可求得AB的长度.