题目内容
【题目】如图1,点A、D在y轴正半轴上,点B、C分别在x轴上,CD平分∠ACB与y轴交于D点,∠CAO=90°﹣∠BDO.
![]()
(1)求证:AC=BC;
(2)如图2,点C的坐标为(4,0),点E为AC上一点,且∠DEA=∠DBO,求BC+EC的长.
【答案】(1)见解析;(2)8
【解析】
(1)由题意∠CAO=90°﹣∠BDO,可知∠CAO=∠CBD,CD平分∠ACB与y轴交于D点,所以可由AAS定理证明△ACD≌△BCD,由全等三角形的性质可得AC=BC;
(2)过D作DN⊥AC于N点,可证明Rt△BDO≌Rt△EDN、△DOC≌△DNC,因此,BO=EN、OC=NC,所以,BC+EC=BO+OC+NC﹣NE=2OC,即可得BC+EC的长.
(1)证明:∵∠CAO=90°﹣∠BDO,
∴∠CAO=∠CBD.
在△ACD和△BCD中
,
∴△ACD≌△BCD(AAS).
∴AC=BC;
(2)由(1)知∠CAD=∠DEA=∠DBO,
∴BD=AD=DE,过D作DN⊥AC于N点,如图所示:
∵∠ACD=∠BCD,
∴DO=DN,
在Rt△BDO和Rt△EDN中
,
∴Rt△BDO≌Rt△EDN(HL),
∴BO=EN.
在△DOC和△DNC中,
∴△DOC≌△DNC(AAS),
∴OC=NC;
∴BC+EC=BO+OC+NC﹣NE=2OC=8.
![]()
练习册系列答案
相关题目