题目内容
已知一元二次方程x2-4x-3=0的两根为m,n,则-mn+= .
如图,已知抛物线y=-x2+bx+c与x轴交于点A(-1.0)和点B(3,0) ,与y轴交于点C,连接BC交抛物线的对称轴于点E,D是抛物线的顶点.
(1)求此抛物线的解析式
(2)直接写出点C和点D的坐标
(3)若点P在第一象限内的抛物线上,且S△ABP=4S△CDE,求P点坐标.
如图所示,已知数轴上A,B两点对应的数分别为-2,4,点P为数轴上一动点,其对应的数为x.
(1)若点P到点A,B的距离相等,求点P对应的数x的值.
(2)数轴上是否存在点P,使点P到点A,B的距离之和为8?若存在,请求出x的值;若不存在,说明理由.
(3)点A,B分别以2个单位长度/分、1个单位长度/分的速度向右运动,同时点P以5个单位长度/分的速度从O点向左运动.当遇到A时,点P立即以同样的速度向右运动,并不停地往返于点A与点B之间.当点A与点B重合时,点P经过的总路程是多少?
如果单项式2x2y2n+2与-3y2-nx2是同类项,那么n等于( )
A. 0 B. -1 C. 1 D. 2
如图,已知一抛物线形大门,其地面宽度.一同学站在门内,在离门脚点远的处,垂直地面立
起一根长的木杆,其顶端恰好顶在抛物线形门上处.根据这些条件,请你求出该大门的高.
抛物线与轴交于和,则________.
已知抛物线过、、、四点,则与的大小关系是( )
A. B. C. D. 不能确定
方程式的左边配成一个完全平方式后,所得的方程为( )
A. (x-)²= B. (x-)²= -
C. (x-)²= D. 以上答案都不对
如图,AB是⊙O的直径,点C在⊙O上,过点C作射线CM且满足∠ACM=∠ABC.
(1)判断CM与⊙O的位置关系,并证明;
(2)延长BC到D,使BC=CD,连接AD与CM交于点E,若⊙O的半径为3,ED=2,求△ACE的外接圆的半径.