题目内容
如图,□ABCD的对角线相交于点O,两条对角线的和为18,AD的长为5,则△OBC的周长为 ___________.
把x2y﹣2y2x+y3分解因式正确的是
A.y(x2﹣2xy+y2) B.x2y﹣y2(2x﹣y) C.y(x﹣y)2 D.y(x+y)2
如图,在平面直角坐标系中,正方形的顶点在轴上,且,,则正方形的面积是( )
A. B. C. D.
如图,P是正方形ABCD对角线AC上一点,点E在BC上,且PE=PB.
(1)求证:PE=PD;
(2)连接DE,试判断∠PED的度数,并证明你的结论.
化简:(1) (2)
(3)
矩形ABCD中,AB=3,两条对角线AC、BD所夹的钝角为120°,则对角线BD的长为( )
A. 6 B. 3 C. D.
如图1,经过原点O的抛物线y=ax2+bx(a、b为常数,a≠0)与x轴相交于另一点A(3,0).直线l:y=x在第一象限内和此抛物线相交于点B(5,t),与抛物线的对称轴相交于点C.
(1)求抛物线的解析式;
(2)在x轴上找一点P,使以点P、O、C为顶点的三角形与以点A、O、B为顶点的三角形相似,求满足条件的点P的坐标;
(3)直线l沿着x轴向右平移得到直线l′,l′与线段OA相交于点M,与x轴下方的抛物线相交于点N,过点N作NE⊥x轴于点E.把△MEN沿直线l′折叠,当点E恰好落在抛物线上时(图2),求直线l′的解析式;
(4)在(3)问的条件下(图3),直线l′与y轴相交于点K,把△MOK绕点O顺时针旋转90°得到△M′OK′,点F为直线l′上的动点.当△M'FK′为等腰三角形时,求满足条件的点F的坐标.
对于任意实数a、b,定义一种运算:a※b=ab﹣a+b﹣2.例如,2※5=2×5﹣2+5﹣2=ll.请根据上述的定义解决问题:若不等式3※x<2,则不等式的正整数解是_____.
对于下列四个条件:
①∠A+∠B=∠C;②∠A:∠B:∠C=3:4:5,③∠A=90°-∠B ;④∠A=∠B=0.5∠C,
能确定ΔABC是直角三角形的条件有________.(填序号即可)