题目内容

【题目】济宁市“五城同创”活动中,一项绿化工程由甲、乙两工程队承担.已知甲工程队单独完成这项工作需120天,甲工程队单独工作30天后,乙工程队参与合做,两队又共同工作了36天完成.
(1)求乙工程队单独完成这项工作需要多少天?
(2)因工期的需要,将此项工程分成两部分,甲做其中一部分用了x天完成,乙做另一部分用了y天完成,其中x、y均为正整数,且x<46,y<52,求甲、乙两队各做了多少天?

【答案】
(1)解:设乙工程队单独完成这项工作需要a天,由题意得

+36( )=1,

解之得a=80,

经检验a=80是原方程的解.

答:乙工程队单独做需要80天完成


(2)解:∵甲队做其中一部分用了x天,乙队做另一部分用了y天,

=1

即y=80﹣ x,

又∵x<46,y<52,

解得42<x<46,

∵x、y均为正整数,

∴x=45,y=50,

答:甲队做了45天,乙队做了50天


【解析】(1)设乙工程队单独完成这项工作需要a天,由题意列出分式方程,求出a的值即可;(2)首先根据题意列出x和y的关系式,进而求出x的取值范围,结合x和y都是正整数,即可求出x和y的值.
【考点精析】掌握分式方程的应用和一元一次不等式组的应用是解答本题的根本,需要知道列分式方程解应用题的步骤:审题、设未知数、找相等关系列方程、解方程并验根、写出答案(要有单位);1、审:分析题意,找出不等关系;2、设:设未知数;3、列:列出不等式组;4、解:解不等式组;5、检验:从不等式组的解集中找出符合题意的答案;6、答:写出问题答案.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网