题目内容
【题目】已知二次函数y=ax2+bx+c的图象如图所示,给出下列结论:①abc>0;②a﹣b+c<0;③2a+b﹣c<0;④4a+2b+c>0,⑤若点(﹣
,y1)和(
,y2)在该图象上,则y1>y2.其中正确的结论是_____(填入正确结论的序号)
![]()
【答案】②③④
【解析】解:∵抛物线开口向下,
∴a<0,
∵对称轴在y轴右边,
∴b>0,
∵抛物线与y轴的交点在x轴的上方,
∴c>0,
∴abc<0,故①错误;
∵二次函数y=ax2+bx+c图象可知,当x=﹣1时,y<0,
∴a﹣b+c<0,故②正确;
∵二次函数图象的对称轴是直线x=1,c>0,
∴﹣
=1,
∴2a+b=0,
∴2a+b<c,
∴2a+b﹣c<0,故③正确;
∵二次函数y=ax2+bx+c图象可知,当x=2时,y>0,
∴4a+2b+c>0,故④正确;
∵二次函数图象的对称轴是直线x=1,
∴抛物线上x=﹣
时的点与当x=
时的点对称,
∵x>1,y随x的增大而减小,
∴y1<y2,故⑤错误;
故答案为:②③④.
练习册系列答案
相关题目