题目内容

若一个多边形的内角和小于其外角和,则这个多边形的边数是


  1. A.
    3
  2. B.
    4
  3. C.
    5
  4. D.
    6
A
分析:由于任何一个多边形的外角和为360°,由题意知此多边形的内角和小于360°.又根据多边形的内角和定理可知任何一个多边形的内角和必定是180°的整数倍,则此多边形的内角和等于180°.由此可以得出这个多边形的边数.
解答:设边数为n,根据题意得
(n-2)•180°<360°
解之得n<4.
∵n为正整数,且n≥3,
∴n=3.
故选A.
点评:本题考查多边形的内角和与外角和、方程的思想.关键是记住内角和的公式与外角和的特征,还需要懂得挖掘此题隐含着边数为正整数这个条件.本题既可用整式方程求解,也可用不等式确定范围后求解.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网