题目内容
如图,?ABCD中,AB=3,BC=5,BE平分∠ABC交AD于点E、交AC于点F,则
的值为
- A.

- B.

- C.

- D.

B
分析:由平行四边形的性质和BE平分∠ABC交AD于点E的条件可证明AB=AE,易证△AEF∽△CBF,利用相似三角形的性质即可求出
的值.
解答:∵四边形ABCD是平行四边形,
∴AD∥BC,
∴∠AEB=∠EBC,
∵DE平分∠ABC,
∴∠ABE=∠EBC,
∴∠ABE=∠AEB,
∴AB=AE=3,
∵AD∥BC,
∴△AEF∽△CBF,
∴
=
.
故选B.
点评:本题考查了平行四边形的性质、等腰三角形的判定和性质、角平分线的定义以及相似三角形的判定和性质,题目的难度不大,是中考常见题型.
分析:由平行四边形的性质和BE平分∠ABC交AD于点E的条件可证明AB=AE,易证△AEF∽△CBF,利用相似三角形的性质即可求出
解答:∵四边形ABCD是平行四边形,
∴AD∥BC,
∴∠AEB=∠EBC,
∵DE平分∠ABC,
∴∠ABE=∠EBC,
∴∠ABE=∠AEB,
∴AB=AE=3,
∵AD∥BC,
∴△AEF∽△CBF,
∴
故选B.
点评:本题考查了平行四边形的性质、等腰三角形的判定和性质、角平分线的定义以及相似三角形的判定和性质,题目的难度不大,是中考常见题型.
练习册系列答案
相关题目
| 5 |
| A、当旋转角为90°时,四边形ABEF一定为平行四边形 |
| B、在旋转的过程中,线段AF与EC总相等 |
| C、当旋转角为45°时,四边形BEDF一定为菱形 |
| D、当旋转角为45°时,四边形ABEF一定为等腰梯形 |